Differential effects of NSAIDs on amyloid β_{1-42} peptide aggregation

Atheer Al-Zurfi^{ab}, Harmesh Aojuła^{a}, Jeffrey Penny^{*}

^{a} Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, UK; ^{b} School of Pharmacy, University of Kufa, Najaf, Iraq

ARTICLE INFO

Received: 25/05/2018
Accepted: 08/06/2018
Published: XX/XX/2019

*Corresponding author.
Tel.: +44-1612758344
Fax:
E-mail: Jeff.Penny@manchester.ac.uk

SUMMARY

Alzheimer’s disease (AD) is the most common cause of dementia and one of the great health-care challenges of the 21st century. The disease is characterised by extracellular aggregation of the amyloid beta (Aβ_{1-42}) peptide within the brain, with subsequent formation of plaques leading to dementia. Currently, there is no cure for AD with only symptomatic therapies available which have demonstrated no, or limited, efficacy. Current pharmacologic studies into AD have focused principally on the development of disease-modifying therapies that can slow the progression of AD. Targets of these investigational agents include Aβ_{1-42} production, aggregation, and clearance. The ability of non-steroidal anti-inflammatory drugs (NSAIDs) to influence Aβ_{1-42} aggregation was assessed using the thioflavin-T spectrofluorimetric assay. Mefenamic acid and flufenamic acid both significantly reduced Aβ_{1-42} aggregation in vitro; however ibuprofen and naproxen had no significant effect on aggregation. These studies highlight that NSAIDs may have potential for helping manage or treat AD.

© BY 4.0 Open Access 2019 – University of Huddersfield Press

INTRODUCTION

Alzheimer’s disease (AD), an irreversible, progressive brain disease that destroys memory and cognitive functions, is the most common cause of dementia. AD is characterised by extracellular accumulation of amyloid beta 1-42 (Aβ_{1-42}) peptide with subsequent formation of plaques (Möller et al., 1998). A reduced prevalence of AD in individuals receiving long-term treatment with non-steroidal anti-inflammatory drugs (NSAIDs) has been reported in epidemiological studies (Eriksen et al., 2003) and it has been suggested NSAIDs decrease neurotoxic inflammatory responses in the brain (Weggen et al., 2001). The fenamate class of NSAIDs are cyclooxygenase inhibitors (Warner et al., 1999) which selectively and potently inhibit the Nod-like receptor protein 3 (NLRP3) inflammasome (Khansari et al., 2009). In a transgenic mouse model of AD fenamates have been shown to have beneficial effects on memory loss and it has been suggested fenamate NSAIDs could be repurposed as NLRP3 inflammasome inhibitors in inflammatory diseases such as AD (Daniels et al., 2016).

MATERIALS AND METHODS

Aβ_{1-42} was purchased from Cellmano Biotech Limited, China. Mefenamic acid, flufenamic acid, ibuprofen, naproxen and Thioflavin T were purchased from Sigma-Aldrich, UK. Aggregation of Aβ_{1-42} was measured spectrofluorimetrically using the thioflavin-T assay. The effects of mefenamic acid, flufenamic acid, ibuprofen and naproxen on Aβ_{1-42} aggregation were analysed over 72 h.
RESULTS AND DISCUSSION

Both mefenamic acid and flufenamic acid significantly inhibited Aβ$_{1-42}$ aggregation whilst naproxen and ibuprofen had no significant effect (Figure 1). These findings are consistent with those that demonstrate mefenamic acid reduced neurotoxicity and improved learning and memory in a rat model of AD (Joo et al., 2006).

CONCLUSIONS

The current study suggests that mefenamic acid and flufenamic acid have the potential to reduce Aβ$_{1-42}$ aggregation, a key hallmark of AD, and may have potential for helping manage or treat AD.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Higher Committee for Education Development in Iraq (HCED).

REFERENCES

