Skip to main content
The impact of drug-loading factors on the solid-state form of ritonavir-mesoporous silica systems

Abstract

Among the formulation techniques used to enhance the solubility and dissolution rate of poorly, aqueous-soluble drugs, mesoporous silica drug delivery systems have shown promise. A range of processes are employed to load drugs onto silica and solvent-based approaches are widely employed. This study aims to understand the influence of drug concentration insolvent and drug-silica ratio on drug solid-state form and amorphization within silica. Ritonavir which belongs to  BCS Class II was used as a model drug. Ritonavir was loaded into Syloid®244FP using a solvent evaporation method. Ritonavir loading percentage was calculated based on the assumption that the entire specific surface area of silica is exposed and available for drug adsorption. Ethanol solutions with 3 different ritonavir concentrations; 70%, 32% and 20% saturated solubility at 25°C were employed. Ritonavir was loaded into silica at 1:1, 1:2and 1:3 ritonavir: silica ratios. All systems included ritonavir loaded beyond monolayer surface coverage. Ritonavir- Syloid®244 FP formulations were characterised using DSC, PXRD, FT-IR, and TGA. The results showed that all ritonavir-Syloid®244 FP systems prepared contained ritonavir in a non-crystalline state.

Keywords

mesoporous silica, Ritonavir, Solid-state

How to Cite

Al-Dagamin, T., O'Shea, J. P. & Crean, A., (2022) “The impact of drug-loading factors on the solid-state form of ritonavir-mesoporous silica systems”, British Journal of Pharmacy 7(2). doi: https://doi.org/10.5920/bjpharm.1150

Funding

Name
Science Foundation Ireland
768

Views

188

Downloads

Share

Authors

Downloads

Issue

Publication details

Licence

Creative Commons Attribution 4.0

Identifiers

Peer Review

This article has been peer reviewed.

File Checksums (MD5)

  • Full text: 17a3bd8af33af3548d25988fedd50c7a