Assessing Lipid Nanoparticle Protein Corona Formation and Cytocompatibility


Lipid nanoparticles(LNPs) represent an emerging new modality for mRNA delivery. Following administration and interaction with blood constituents, LNPs form a corona complex consisting of proteins adsorbed on the surface altering their stability, biological identity, and fate. Cytocompatibility of the LNPs is an important factor when considering their safety efficacy in delivering the encapsulated drug dose, lipid choice and the specific target cells. The aim of this study was to investigate the changes in LNP physical parameters in physiologically-relevant media. Key attributes such as particle size, polydispersity index and zeta-potential were measured using Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA). Cytocompatibility was assessed via CellTiter-Glo® assay. Following 24-hour incubation of LNPs with Bovine Serum Albumin (BSA), the LNP z-average increased from 92.4 (± 49.0) nm to 131.4 (± 64.9) nm indicating interaction between LNPs and BSA. A decrease in percentage cell viability was demonstrated with increased lipid concentration for MCF-7 and A549 cell lines. This work shows changes in LNP physicochemical properties in the presence of protein and biologically relevant conditions consistent with protein surface adsorption. The cytocompatibility of LNPs can be associated with the type of lipids used in the synthesis of LNPs.


lipid nanoparticles, analysis, protein corona, cytocompatibility

How to Cite

Abdulrahman, R., Ibrahem, H., Mahmood, A., Treacher, K. E., Capomaccio, R. B., Vasey, C., Perrie, Y. & Rattray, Z., (2023) “Assessing Lipid Nanoparticle Protein Corona Formation and Cytocompatibility”, British Journal of Pharmacy 8(2). doi:


  • AstraZeneca UK Limited
  • Engineering and Physical Sciences Research Council (EPSRC)






Rand Abdulrahman
Huda Ibrahem (University of Strathclyde)
Amna Mahmood (University of Strathclyde)
Kevin Edward Treacher orcid logo (AstraZeneca)
Robin Bruno Capomaccio (AstraZeneca)
Catherine Vasey (University of Nottingham)
Yvonne Perrie (University of Strathclyde)
Zahra Rattray (University of Strathclyde)





Creative Commons Attribution 4.0


Peer Review

This article has been peer reviewed.

File Checksums (MD5)

  • Fulltext: 4415da44943a2ad80b86c169ab59ce87